
~ )  Pergamon 
lnt. J. Heat Mass Transfer. Vol. 39, No. 8, pp. 1591-1602, 1996 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0017-9310/96 $15.00+0.00 

0017-9310(95)00260-X 

The inviscid stagnation-flow solidification 
problem 

R. H. RANGEL and X. BIAN 
Department of Mechanical and Aerospace Engineering, University of California, 

Irvine, CA 92717, U.S.A. 

(Received 7 November 1994 and in final form 6 July 1995) 

Abstract--The stagnation-flow Stefan solidification problem is defined and investigated. By applying the 
method of instantaneous similarity, the temperature field, the solid-liquid interface location and its growth 
rate, valid for the initial stages of solidification, are obtained. Furthermore, with the use of the quasi-steady 
approximation, a solution of the problem valid for the final stages of solidification is obtained. The analysis 
reveals a fundamental difference between the stagnation-flow solidification behavior and that in the 
classical Stefan solidification problem. Both methods of solution are used to show that the solidification 
front grows asymptotically to a finite maximum value as time goes to infinity. For large values of time, 
both methods yield the same temperature distribution and the same value of the solid phase thickness, 

which are independent of the Stefan number. 

1. INTRODUCTION 

Transient heat traasfer problems involving melting 
or solidification are important in many engineering 
applications, such as processes of casting, welding and 
spray forming. The last application offers the unique 
opportunity to corabine the benefits associated with 
fine-particulate technique with in situ processing. 
Mathematically, the problem of solid-liquid phase 
change belongs to tlhe class of moving boundary prob- 
lems, because of the existence of a moving interface. 
In many situations involving phase change problems, 
multidimensional variations are important, boundary 
conditions are complex, thermo-physical properties 
vary with temperature and phase, and several mech- 
anisms of heat transfer may take place. Thus, ana- 
lytical solutions have been obtained only in a limited 
number of cases and investigations on phase change 
problems are usually conducted by numerical 
methods. 

Examples of analytical or semi-analytical solutions 
to phase change problems are those of Cho and Sun- 
derland [1] and Madejski [2]. An extensive review of 
analytical and numerical techniques can be found in 
Alexiades and Solomon [3] and Salcudean and Abdul- 
lah [4], and a review of the methods used in droplet 
solidification was presented by Bennett and Pou- 
likakos [5]. The most classical exact solution is prob- 
ably the so called Neumann solution of the Stefan 
problem [6-8] which predicts the temperature dis- 
tribution and rate of solidification (or melting) of a 
semi-infinite mediu~aa. A significant number of numeri- 
cal techniques have been developed to solve solid- 
liquid phase change problems [9-17]. The numerical 
methods used can be conveniently divided into two 
groups. In the first group, known as the enthalpy 

method, enthalpy and temperature are used as depen- 
dent variables in the energy equation. The resulting 
equation is applicable in both the solid and liquid 
regions as well as the solid-liquid interface. The 
location of the phase change interface is determined 
from the calculated enthalpy, rather than from the 
solid-liquid interface energy equation [9-11]. In the 
second group, the temperature and the solid-liquid 
interface location are the dependent variables and the 
energy conservation equations are written separately 
for the solid and the liquid regions. The major diffi- 
culty with this technique arises from the need to track 
a continuously moving phase change interface. The 
rate of propagation of this boundary into the liquid 
region (solidification) or into the solid (melting) 
region depends on the thermal properties of the solid 
and liquid regions, and in addition, in the cases where 
there exists motion in the liquid phase, such as metal 
droplet solidification in spray processes, it also 
depends on the fluid properties of the liquid region. 
Various procedures have been developed to deal with 
this problem [12, 13], but most of them have addressed 
the cases in which there is no liquid motion, or they 
simply have taken into account heat conduction as 
the sole heat transfer mechanism [5, 14]. Inspection of 
those investigations which have included fluid motion, 
such as droplet deformation and solidification during 
impingement on a cold substrate, indicates that 
despite the significant results derived from their 
models, the studies mainly rely on the classical Neu- 
mann solution of the Stefan solidification model to 
determine the solid-liquid interface position [2, 15- 
18]. There are several shortcomings in employing the 
Stefan solidification model in these cases. The most 
important of these is that the Stefan model cor- 
responds to a stagnant liquid phase. An appropriate 
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NOMENCLATURE 

A potential flow strain 
a ratio of the liquid to solid phase 

thermal diffusivity 
b ratio of the liquid to solid phase 

thermal conductivity 
Cp specific heat 
hsf latent heat of solidification 
k thermal conductivity 
q" heat flux 
s solid phase thickness 
St Stefan number  
T temperature 
t time 
u velocity component  of liquid phase in 

x direction 
v velocity component  of liquid phase in 

y direction 
x spatial coordinate normal to the 

substrate 
y spatial coordinate parallel to the 

substrate. 

Greek symbols 
thermal diffusivity 

r/ transformed coordinate 
0 nondimensional  temperature 
p density 
2 solidification parameter 
z nondimensional  time. 

Subscripts 
i initial 
{ liquid phase 
0 substrate 
m melting 
s solid phase. 

Superscript 
nondimensional.  

heat transfer and solidification model must account 
for convective effects due to fluid motion, and in some 
cases for viscous dissipation effects. In order to relax 
some of those limitations, the present study reports 
an investigation of the effect of  fluid motion in the 
solidification problem in a half space. The solution 
should provide a more reasonable model for the sol- 
idification behavior of the liquid in motion, and pro- 
vide better insight into situations, such as those enco- 
untered during the deformation and solidification of 
a droplet impinging on a cold substrate. 

We investigate the effect of the liquid motion on 
its solidification behavior by considering the inviscid 
two-dimensional stagnation flow onto a cold sub- 
strate. We assume that the physical properties are in- 
dependent of temperature. By coupling the conductive- 
convective liquid energy equation with the heat con- 
duction equation in the solid region as well as the 
energy balance equation at the interface, we set up 
the mathematical model of the half space convective 
Stefan problem. An instantaneous similarity method 
and a quasi-steady approximation are employed to 
solve the time depending system of equations. A para- 
metric study is included in the discussion of the sol- 
idification behavior. Temperature distributions are 
obtained, and the behavior of the solid-liquid inter- 
face location is investigated. A numerical solution of 
the problem is given elsewhere [19]. 

2. MATHEMATICAL FORMULATION 

2.1. The classical Stefan problem 
The physical description of the classical Stefan sol- 

idification problem is given as follows : a liquid at an 

initially uniform temperature T~ which is higher than 
the melting temperature Tm of the substance is con- 
fined to a half space x > 0. At t = 0, the boundary  
surface at x = 0 is lowered to a temperature T O below 
Tm and maintained at that temperature for times t > 0. 
As a result, solidification starts at the surface x = 0 
and the solid-liquid interface moves in the positive x 
direction. Figure 1 illustrates the problem and shows 
typical temperature profiles. 

The heat conduction equation for the solid phase is 

6~2Ts 10Ts  
i n O < x < s ( t )  t > O  (1) 

~X 2 ~s ~?t 

with the boundary condition : Ts(x, t) = To at x = 0, 
t > 0 .  

The heat conduction equation for the liquid phase 
is 

(~2 T/ 1 ~Tt 
- - -  i n s ( t ) < x < o e  t > 0  (2) 
~X 2 ~g Ot 

with Tt(x, t) --, Ti as x ~ oo, t > 0, 
and T~(x, t) = T, for t = 0 and x > 0. 

The coupling conditions at the interface x = s(t) 
a r e  

Ts(x, t) = Tt(x, t) = T m (3) 

k s ~ T S - k ~  OTt h ds(t) 
Ox Ox = p sf dt " (4) 

The Neumann  solution of this problem is [6-8] 

Ts(x, t) -- To erf[x/2(~sO m] 
(5) 

Tm - To erf (2/2) 
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Fig. 1. Solidification in a half space : the classical Stefan solidification problem. 

Tt(x, t)-- Ti erfc [x/2(~t)'/2] 
Tm - 7] erfc (2/2a '/2) ' (6) 

where a --- ~t/~s. The interface is located at 

s(t) = 2 x ~ J ,  (7) 

where 2 is a parameter independent of time and deter- 
mined from the following relation obtained from 
equation (4)  : 

e -~/4 b T m -  r i e -;z/4a 2 ~  - - +  
erf (2/2) a 1/2 Tm - To erfc [2/2a 1/2] 2St ' 

where b = k~/ks, and 

s t  - cp s (Tm-  To) 

hsf 

is the Stefan number. 

(8) 

(9) 

2.2. The stagnation-flow solidification problem 
We now consider the case of a stagnation flow in a 

half space (Fig. 2)  In general, the solution for the 
flow field is coupled with the thermal-field solution. If 
the physical properties are assumed independent of 
temperature, the fl~aid mechanics and thermal solu- 
tions are still coupled because of the rising solid front. 
In general, the unsteady, viscous Navier-Stokes equa- 
tion must be solved. If the flow is assumed inviscid, 
only Laplace's equation for the velocity potential 
needs to be solved In this case, the unsteady fluid 

mechanics solution is indeed a quasi-steady solution 
given by 

u = - -2A(x--s( t ) )  (10) 

v = 2Ay. (11) 

We note here that the inviscid assumption is most 
appropriate for fluids with very small Prandtl 
numbers, such as liquid metals. Neglecting viscous 
dissipation (inviscid flow), the energy equation of the 
liquid phase can be written as 

OTt +uOT~ +v~T t  [-a2T~ a2Tel (12) 
at ~xx Oy = ~'[777x 2 + ay 2 J" 

A straightforward scaling analysis shows that the 
tangential and perpendicular velocity components are 
of the same order of magnitude. Moreover, the tan- 
gential temperature gradient is much smaller than the 
normal temperature gradient. Recognizing this, the 
liquid phase energy equation is simplified to 

aTe 2A(x_s ( t ) )  aTt 02T( (13) 
at ~ = ~t ax 2 

On the other hand, the solid phase energy equation 
equation (1), interface energy balance equation equa- 
tion (4), initial and boundary conditions remain 
unchanged. 

3. QUASI-STEADY SOLUTION 

In the classical Stefan problem, the solid front 
moves with a velocity proportional to the square root 
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Fig. 2. Solidification in a half space : the stagnation flow solidification problem. 

of time. As time approaches infinity, the velocity of 
the solidification front approaches zero. The same 
behavior is expected in the convective solidification 
problem. Therefore, a quasi-steady solution is 
expected for large values of times. In employing the 
quasi-steady approximation, we neglect the time 
derivative in the governing equations (1) and (13). The 
boundary and initial conditions remain unchanged. 

The solid phase equation becomes 

e2T, 
- 0 (14) 

Ox 2 

with the solution 

T , -  Tm x 
Os -- Tm - - ~  -- 1 + s(t~" (15) 

The liquid phase equation is 

OTt OZTt (16) 
--2A(x--s(t))~ffx = at 8x 2 

with the solution 

T , - T m  
O r -  T i - T m  - 

;i exp E- -sx")] ,,2 
~g X~2 

(17) 

The energy balance [equation (4)] can be written as 

ds k~(Tm - To) 
ph~f ~ 

k,(Z--~m) eXp ( A'2 ] \a :  ] 

fyexpF-eAlx'2-sx')] a~ ~e 
(18) 

Employing the error function, equation (18) can be 
simplified to 

ds k~(Tm- To) 2(Tin-  To)O~kt /-~- 
phsf d t -  s (19) 
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which can be rewritten in dimensionless form as 

1 dg 1 2bOi 
(20) 

St dr g x / ~  

after introducing the dimensionless variables 

g s A = ~ (21) 

= A t. (22) 

The asymptotic value of g can now be obtained by 
using the fact that dg/dz --+ 0 as z -~ oo. 

Then equation (20) gives 

1 2bOi 
, 0  a s r ~ o o  (23)  

that is 

s - - * - -  as T ~ m. (24) 
2bOi 

Integrating equation (20) and employing this last 
result yields 

x / ~  [-x/-~ ( 1 -  2bOis"~  =-2bO, s,L ln. (2,) 

Equation (24) demonstrates that there exists an 
upper limit of the solid phase thickness as time goes to 
infinity. This finding represents a significant difference 
between the stagnation flow and the classical sol- 
idification problems. Note also that the maximum 
solid thickness is independent of the Stefan number. 
Further discussion of this behavior is provided in the 
Results section. 

z = At. (27) 

At the same time, the temperature is changed to the 
dimensionless form 

T - T ,  
0 Tm - To' (28) 

The governing equations are transformed to : 
Solid phase [equation (1)], 

z - -  = + ~r/~-q (29) 8z &/2 

with 0 ~ = - 1  at q = 0 ,  and 

Liquid phase [equation (13)], 

0 , = 0  at q = s ( t ) /  

= [ 2 ~ ( ~ - ~ )  +,'-~1 = -  . a  T ~ -  T (30) 

with 0e = 0 at r /= 2 and 0t ~ 0~ at z = 0 or r /~  oo. 
The energy balance at the interface location [equa- 

tion (4)] becomes 

bO0¢ 2 z d2 dOs 
&l + ~tt + St dz Or/ at q = 2. (31) 

In accordance with the instantaneous similarity 
assumptions, we neglect terms involving derivatives 
with respect t o ,  and integrate the remaining ordinary 
differential equations. The results are expected to be 
valid for small values of z, but as will be shown below, 
they are also valid for large values of z. The solid 
phase temperature distribution is 

4. SOLUTION BY THE METHOD OF 
INSTANI"ANEOUS-SIMILARITY 

A classical method for solving thermal boundary- 
layer problems is the method of local-similarity. An 
especially attractive: feature of the local-similarity 
method is that the solution at a particular stream- 
wise location can be found without having to perform 
calculations at upstream locations, that is, each solu- 
tion is locally autonomous• Furthermore, the gov- 
erning partial-differential equations may be trans- 
formed into ordinary differential equations with more 
straightforward solutions. 

Here, the concepl: of local-similarity is applied to 
the time variation of the liquid phase temperature• 
Strictly speaking, it should be referred to as an instan- 
taneous-similarity method to differentiate it from the 
local-similarity, which refers to a similarity in space. 
Mathematically, however, the solution proceeds in an 
analogous manner. 

Firstly, the new w~riables (0, z) are introduced and 
the coordinates (x, t) are transformed to (r/, z), where 

X 
(26) 

• erf 0//2) 
0s = - 1 + ~ (32)  

while the liquid phase temperature distribution is 

0g ~ 0 i 

[ (1/4+z) 222 q 
exp a q,2 + -~- n'J dn' 

+ 22z/, d '  a r/'2 a ] ~/ f exp[ (1/4+z) 

(33) 

The interface energy balance equation becomes 

exp (-22/4)  2 

x/~erf(2/2 ) 2St 

b0i exp I -  (~--~) ~- ] 

222 ,q , f;exp[ (1/4+z)~t'2+~-qJ d q a  
(34) 

from which 2 can be determined. By employing the 
error function, equation (34) can be rewritten as 
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exp ( - 2 2/4) 2 

x /~  erf (2/2) 2St 

/~11+ 4Q 2 2 

O i b 4 - -  a e x p [  4a(i q- 4z)]  
- ,~ ( 3 5 )  

xf~ erfc [x/4a(1-+ 4z) ] 

Equation (35) shows that 2 is a function of  time, in 
contrast with the 2 of  the classical Stefan problem 
which is independent of  time. It should also be noted 
that equation (35) reduces to the corresponding one 
for the stagnant case [equation (8)] for r = 0. Equa- 
tion (35) is evaluated numerically to determine the 
time variation of  the solidification front g = 2,,f~. 

The existence of  an asymptotic upper limit for 
can also be shown from the instantaneous-similarity 
results. We first obtain the limit of  2 as z ~ oo from 
equation (35) 

2-~ x / ~  asz ~ oo (36) 
2bOixf ~ 

which yields 

g ~ - ~  a s r ~  (37) 
2bOi 

corresponding to the same result, equation (24), 
obtained in the quasi-steady analysis. This is an indi- 
cation of the validity of  the instantaneous similarity 
method for large values of  time. This fact becomes 
evident when one observes that all terms involving 
time derivatives in the governing equation in the (z, 
q) space are of  the form z(8/&) which is small for the 
initial times (z ~ 0). For  large times, the term d/& can 
be neglected after dividing the governing equations by 
z and taking the limit for r --, ~ (t ~ ~ ) .  This last 
procedure is in fact equivalent to a quasi-steady 
approximation. 

5. RESULTS 

Figure 3 shows the variation of  2 with St for differ- 
ent values of~ for the cases of  (a) 0~ = 1, a = 1, b = 1 ; 
(b) 0~ = 1,a=O.5, b=O.5;(c) Oi=O.l,a= 1, b =  1; 
(d) 0~ = 10, a = 1, b = 1. It can be seen that for the 
same St, 2 decreases as r increases, while for the same 
z, 2 increases with increasing St. Figure 4 shows the 
variation of  2 with St at an early time for the above 
four cases of  0~, a, b. It can be seen that during the 
initial stages of  solidification (z = 0.1) and for a very 
small Stefan number, the values of  ;t are very similar 
for all cases. On the other hand, for a large Stefan 
number, there are significant differences in 2 for the 
different cases, with smaller values of  0i, a and b cor- 
responding to larger values of  2, as expected. It can 
also been seen that as 0i increases to I0, 2 remains 
almost independent of  the Stefan number. 

Figure 5a shows the variation of  2 with z for differ- 

ent values of  St for the case of  0 i = 1, a = 1 b = 1. It 
should be noted that 2 approaches 0 as r approaches 
infinity. For  small values of  z, that is, during the initial 
stages of solidification, 2 decreases faster for larger 
values of  the St number, and larger values of  the 
Stefan number correspond to higher 2. In Fig. 5b, a 
comparison is made of  the variation of  2 with r for 
the four cases of  (a) 0 i = 1, a = 1 b = 1 ; (b) 0~ = 1, 
a = 0 . 5 ,  b = 0 . 5 ; ( c )  0 ~ = 0 . 1 , a =  l b =  l ; ( d )  0~= 10, 
a = 1 b = 1 for a Stefan number of  1. It can be seen 
that for the same value of  the Stefan number, smaller 
values of  0i, a and b correspond to higher value of  2. 

An estimate of  the accuracy of  the instantaneous 
similarity method is obtained by calculating the mag- 
nitude of  the term z (80/&) for the solid phase. F rom 
the solution of  the solid phase temperature, equation 
(32), we obtain 

1 d2 
erf 0l/2) e ~'2'4 - -  - -  

80~_ ,f~ dr (38) 
8r (erf(2/2)) 2 

The maximum value of  80d& is at q = 2, where 

1 .2/4 d2 

M=80s[ ~ e - "  d~ 
8~- 1,I=~ = -  erf (2/2) (39) 

Figure 6a shows the variation of  zM with z for 
different values of  St for the case of  0~ = 1, a = 1, 
b = 1. It can be seen that during the initial stages of  
solidification, the value of  zM is small enough to 
ensure the accuracy of  the local similarity solution. In 
Fig. 6b, a comparison is made of  the variation of  zM 
with r for a fixed Stefan number for the four cases (a) 
0 i =  1, a =  1, b =  1; (b) 0 i = 0 . 1 ,  a =  1, b =  1; (c) 
0~= 1, a = 0 . 5 ,  b = 0 . 5 ;  (d) 0~= 10, a =  1, b =  1. It 
can be seen that for all cases, the value of  r M  is small 
in the initial stages of  solidification, particularly for 
smaller a, b and 0i. 

Figure 7a shows the variation of  the dimensionless 
thickness g with r for different values of  the Stefan 
number for the case of  0i = 1, a = 1, b = 1 calculated 
from the instantaneous similarity results. It can be 
seen that g increases with z, and that there exists an 
upper limit of  g as z approaches infinity, equation 
(37). It can also be observed that this limit value is 
independent of  the Stefan number and that g increases 
faster for larger St. Figure 7b shows a comparison of  
the variation of  g with z for four cases (a) 0~ = 1, 
a =  1, b =  1; (b) 0~=0.1,  a =  1, b =  1; (c) 0~= 1, 
a = 0 . 5 ,  b = 0 . 5 ; ( d )  0 i =  10, a =  1 , b =  l for the same 
Stefan number. The dimensionless thickness g 
increases faster for smaller a, b and 0i. 

Figure 8a shows the temperature distribution along 
the nondimensional x coordinate, 

x A 

during the initial and final stages of  solidification 
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Fig. 3. Variation of ), with Stefan number for different solidification times. 

obtained with the instantaneous similarity method. It 
can be seen that at very large time, the temperature 
distribution becomes independent of the Stefan 
number. Figure 8b shows the temperature distribution 
during the initial stages of solidification (z = 0.1) and 
at very large time (z = 100) for the cases of (a) 0i = 1, 
a =  1, b =  1 ; (b )  0 i = 0 . 5 ,  a =  1, b =  l a n d ( c )  0 i =  1, 
a = 0.5, b = 0.5. During the initial stages of sol- 
idification and at the same position in the liquid phase, 
the liquid temperatttre is lower for higher a and b, as 

expected. For  large time, however, at the same pos- 
ition in the liquid phase or solid phase, the tem- 
perature 0e or 0s is lower for the cases with lower a, b 
or 0i. Thus, it can be concluded that variations in 
Stefan number  bring about  changes in the temperature 
distribution and interface location in the initial stage 
of solidification, while changes in the parameters 0~, a 
and b affect both the initial stage and the long time 
behavior of the solution. 

The two solutions obtained from equations (34) and 
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(25), corresponding to the instantaneous similarity 
solution and the quasi-steady approximation, respec- 
tively, are compared in Fig. 9. In Fig. 9a, the variation 
of  the solid phase thickness ~ with time T is plotted for 
different Stefan numbers for the case of  0, = 1, a = 1, 
b = 1. The interface location obtained from the quasi- 
steady solution approaches the upper limit much fas- 
ter than that obtained from the method of  instan- 
taneous similarity. It should be noted that the differ- 
ence between the solutions is diminished as the Stefan 
number is made smaller. A comparison of  the two 
solutions for the cases of  (a) 0~ = 0.1, a = 1, b = 1 ; 
( b )  0 i = 1, a = 0.5, b = 0.5 ; (c) 0~ = 1, a = 1, b = 1 
and (d) 0i = 10, a = 1, b = 1 is made in Fig. 9b. It can 
be seen that both methods predict the same upper 
limit as time approaches infinity. 

Figure 10a shows the quasi-steady temperature dis- 
tributions in the initial and final stages of  solidification 
for various Stefan numbers for the case 0i = 1, a = 1 
and b = 1. The qualitative behavior of  the solutions 
is similar to that of  the instantaneous similarity solu- 
tions, although there are quantitative differences. Fig- 
ure 10b shows the quasi-steady the temperature dis- 
tributions for the cases of  (a) 0i = 1, a = 1, b = 1 ; (b) 
0 i = 0 . 5 ,  a =  1, b =  1 and (c )  0 i =  1, a = 0 . 5 ,  b = 0 . 5  
with a Stefan number of  I. 

A comparison of  the temperature distributions 
obtained with the instantaneous similarity solution 
and with the quasi-steady approximation in the initial 
stage of  solidification and at very large solidification 
times is shown in Fig. 11. During the initial stages of  
solidification, the solid phase thickness growth rate 
obtained with the quasi-steady solution is higher than 
that computed with the instantaneous similarity solu- 
tion. Because it neglects the transient cooling of  both 
the liquid and solid phases, the quasi-steady solution 
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Fig. 5. Variation of 2 with time : (a) effect of Stefan number, 
(b) effect of 0i, a and b. 

predicts a faster solidification rate. On the other hand, 
during the final stages of  solidification, both solutions 
approach one another. In fact, a scaling analysis 
shows that as z --* o% the governing equations (29) 
and (30) used to derive the instantaneous similarity 
solution of  the solid and liquid phase temperature 
distributions, have the same form as equation (14) 
and equation (16), respectively. Considering this fact 
and that both methods predict the same upper limit 
of  interface location, it can be concluded that the 
instantaneous similarity solution is valid for both the 
initial and final stages o f  solidification. On the other 
hand, the quasi-steady approximation is simpler, but 
only valid for the long time behavior of  the problem. 
The intermediate time behavior could only be 
obtained with a numerical solution. 

The existence of  a finite asymptotic limit for the 
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solidification front in the stagnation-flow problem 
may be understood with the aid of  Fig. 12, by realizing 
that the thermal field in the liquid phase reaches a 
truly quasi steady solution after a finite time. This 
implies that the heat flux at the interface on the liquid 
side decreases, not  to zero, but  to a finite value in the 
limit of  t ~ o0. This is not  the case in the classical 
Stefan solidification problem where the heat flux at 
the interface on the liquid side continues to decrease 
as t-1/2 as t --* o0. Moreover ,  the behavior of  the heat 
flux at the interface on the solid side is similar for both 
the classical and the :+tagnation flow problems. In the 
long-time behavior, this heat flux is dictated by the 
conduction heat transfer through the solid 

Tin-r0 
q~' (40) 

S 

In the classical problem, the solid thickness s 
increases as t 1/2 and thus, the solid heat flux decreases 
as t -  1/2, the same rate of  decrease of  the liquid heat 
flux. Since energy arriving at the interface by con- 
duction from the liquid must ultimately be conducted 
through the solid into the substrate, the solid flux must 
be at least as large as the liquid heat flux. It is actually 
larger, since it must also carry the latent heat of  sol- 
idification released at the interface. In the s tagnat ion-  
flow solidification problem, the solid front can only 
rise to a height which results in a solid heat flux equal 
to the liquid heat flux. At  that point, no further sol- 
idification is possible. 

A few calculations illustrating some practical cases 
for aluminum and tungsten are discussed next. The 
initial liquid temperature is chosen as 100 K above 
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Fig. 9. Variation of the solid phase thickness with time: 
comparison of methods: (a) effect of Stefan number, (b) 

effect of 0i, a and b. 

the melting temperature. The substrate temperature is 
300 K. Other parameters are given in Fig. 13 which 
compares the evolution of  the solid front with time 
for the stagnation-flow solidification model, with the 
Neumann solution of  the classical Stefan problem 
(without liquid motion). It can be seen that the solid 
front location, obtained from the instantaneous simi- 
larity method, approaches an upper limit as time 
increases. On the other hand, the solid front in the 
Neumann solution grows indefinitely with time. The 
effect of  the liquid flow motion on its solidification 
behavior can also be observed in Fig. 13 by comparing 
the solid front evolutions corresponding to different 
values of  the strain rate (A = 1 0  3 s - 1 ,  1 0  6 s - l ,  l 0  7 S -1, 

and 10 s S - l ,  respectively). In high speed metal spray 
deposition processing, the strain rate A is of  the order 
of  v/D, where v is the liquid droplet impinging velocity 
and D is the droplet diameter. For  example, i fv  = 100 
m s - ' ,  and D = 10 #m, the corresponding value of  A 
would be 107 s -L  It can be observed that increasing 
the strain rate results in a decrease of  both the upper 
limit reached by the solidification front and the time 
to approach such a limit. It can also be concluded that 
as the strain rate is reduced to a very small value, that 
is, as the fluid velocity approaches zero, the stagnation 
flow solidification behavior coincides with the Neu- 
mann solution of  the solidification problem without 
liquid motion. 
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Fig. 12. The time variation of the solid and liquid heat fluxes 
at the interface and the solid-liquid interface growth rate. 

6. C O N C L U S I O N S  

The stagnation-flow Stefan solidification problem 
has been defined and both a quasi-steady approxi- 
mation and the instantaneous similarity method have 
been used to solve it and to obtain the solid and liquid 
phase temperature distribution and the interface 
location. The results reveal important  differences in 
the solidification behavior between the classical Stefan 
problem and the stagnation flow problem. When the 
position of  the solidification front is expressed as 
g = 2 ~ ,  the analys:is show that 2 is a decreasing 
function of  time, in contrast with the classical solution 
for the stagnant case in which 2 is constant in time. In 

addition, 2 is a function of  the Stefan number, the 
ratio of  the liquid to solid thermal conductivity, the 
ratio of  the liquid to solid thermal diffusivity, and 
the dimensionless temperature ratio 0i = T~-Tm/ 
T i n - T o .  Both methods show that there exists an 
upper limit of  the solid phase thickness as sol- 
idification time goes to infinity, and comparisons show 
that the two methods yield the same value of  the upper 
limit of  the nondimensionalized solid phase thickness. 
This is in contrast with the solution of  the classical 
Stefan problem in which the solid phase thickness 
continues to grow with the square root of  time as time 
goes to infinity. 
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